Heavy ion Single Event Effects test of the temperature sensor TMP36 from Analog Devices

Test Report

Christian POIVEY SGT-Inc.

Hak Kim Jackson&Tull

Table of Contents

1	IN	TRODUCTION	3
2	TE	ESTED DEVICES	3
3	TE	EST DESCRIPTION	3
	3.1		
	3.2	TEST SET-UP	3
4	TE	EST RESULTS	4
5	CC	ONCLUSIONS	4

1 Introduction

This report presents the heavy ion SEL test data on the TMP36 temperature sensor from Analog Devices. This work has been performed in the frame of the SWIFT project.

2 Tested Devices

The tested devices are described in Table 1. The parts have been delidded for testing.

Туре	TMP36
Manufacturer	Analog Devices
Function	Temperature sensor
Package	5 lead SOT-23
Package marking	N/A
Previous SEE testing	No data available

Table 1: description of the tested devices.

3 Test description

3.1 Irradiation facility

The tests have been performed at the Brookhaven National Laboratories in June 2002. The ion beams used are described in Table 2.

Ion	Energy (MeV)	Average flux (#/cm²-s)	Range (mm)	LET (MeVcm ² /mg)
I-127	320	~5E+04	31	59.7
Au-197	333	~5E+04	28	81.4

Table 2: Ions used at BNL.

3.2 Test set-up

The device can be used for single supply operations from 2.7 to 5.5V. Two power supply conditions have been tested: 3.3V and 5.5V. The highest supply voltage is a worst case for SEL sensitivity. Table 3 gives the supply current at room temperature for these two supply voltages.

Vs (V)	Is(mA)		
3.3	25		
5	28		

Table 3: Supply current for the two tested supply voltages at room temperature.

The power supply current was monitored during irradiation. As soon as the current is larger than a given detection threshold, a Single Event Latchup (SEL) is counted. The SEL detection threshold was set to $50 \, \mu A$.

Different ambient temperatures have also been tested: 25°C, 50°C, 75°C, 80°C. The highest temperature represents a worst case condition for SEL sensitivity. Table 4 shows the output voltages measured for these ambient temperatures.

Output Voltage (V)	Ambient temperature (°C)			
0.75	25			
1	50			
1.2	70			
1.25	75			
1.3	80			

Table 4: Measured output voltages at the different test ambient temperatures (Vout=750mV at room temperature, output scale factor=10mV/°C).

4 Test results

The test results are presented in Table 5. The part is not sensitive to SEL up to the maximum tested LET of 100 MeVcm²/mg.

Run #	SN #	Vs (V)	Vout (V)	Icc (uA)	tilt	eff. LET (MeVcm²/mg)	eff. Fluence (#/cm²)	SEL	Xsec SEL (cm ² /device)
1	1	3.30	0.74	25	0	59.72	1.00E+07	0	0.00E+00
2	1	5.50	0.77	27.6	0	59.72	1.00E+07	0	0.00E+00
3	1	5.50	0.77	27.6	45	84.46	1.00E+07	0	0.00E+00
4	2	5.50	0.75	29.8	0	59.72	1.00E+07	0	0.00E+00
5	2	5.50	0.75	30	45	84.46	1.00E+07	0	0.00E+00
6	3	5.50	0.75	29.7	0	59.72	1.00E+07	0	0.00E+00
7	3	5.50	0.75	29.7	45	84.46	1.00E+07	0	0.00E+00
8	3	5.50	1	30.5	45	84.46	1.00E+07	0	0.00E+00
9	3	5.50	1	30.5	0	81.43	1.00E+07	0	0.00E+00
10	3	5.50	1.18	32	35	99.41	1.00E+07	0	0.00E+00
11	2	5.50	1.25	34	35	99.41	1.00E+07	0	0.00E+00
12	1	5.50	1.29	32	35	99.41	1.00E+07	0	0.00E+00

Table 5: test results.

5 Conclusions

The test results show that the TMP36 temperature sensor is not sensitive to SEL at the maximum tested LET of 100 MeVcm²/mg for the worst case supply voltage and ambient temperature. Therefore TMP36 temperature sensor SEL sensitivity is not a concern for space applications.